Publications
You can view some of my academic publications on arXiv, on ResearchGate, or on ORCID.
Pandemic-related writing (popular and technical) is available here (no longer updated).
Papers and preprints
[preprint] M. Banaji, Some bounds on positive equilibria in mass action networks (2024), (https://arxiv.org/abs/2409.06877)
M. Banaji, B. Boros and J. Hofbauer Bifurcations in planar, quadratic mass-action networks with few reactions and low molecularity, Nonlinear Dyn. (2024), (https://doi.org/10.1007/s11071-024-10068-1)
A. Gupta, P. Hathi, M. Banaji, P. Gupta, R. Kashyap, V. Paikra, K. Sharma, A. Somanchi, N. Sudharsanan, and S. Vyas, Large and unequal life expectancy declines associated with the COVID-19 pandemic in India in 2020, Science Advances 10(29) (2024) (https://doi.org/10.1126/sciadv.adk2070)
[preprint] M. Banaji, B. Boros and J. Hofbauer The inheritance of local bifurcations in mass action networks (2023), (http://arxiv.org/abs/2312.12897)
M. Banaji, B. Boros and J. Hofbauer Oscillations in three-reaction quadratic mass-action systems, Stud Appl Math (2023), (https://doi.org/10.1111/sapm.12639)
M. Banaji, B. Boros and J. Hofbauer The smallest bimolecular mass-action system with a vertical Andronov–Hopf bifurcation, Appl Math Lett (2023), (https://doi.org/10.1016/j.aml.2023.108671)
M. Banaji and B. Boros The smallest bimolecular mass action reaction networks admitting Andronov-Hopf bifurcation, Nonlinearity 36(2) (2023) 1398–1433, (https://doi.org/10.1088/1361-6544/acb0a8)
M. Banaji, Splitting reactions preserves nondegenerate behaviours in chemical reaction networks, SIAM J Appl Math 83(2) 748–769 (2023) (preprint: https://arxiv.org/abs/2201.13105)
M. Banaji, B. Boros and J. Hofbauer, Adding species to chemical reaction networks: preserving rank preserves nondegenerate behaviours, Appl Math Comput 426 (2022) p127109. (Available open access)
M. Banaji and A. Gupta, Estimates of pandemic excess mortality in India based on civil registration data, PLoS Global Public Health (2022). (https://doi.org/10.1371/journal.pgph.0000803)
M. Banaji, Building Oscillatory Chemical Reaction Networks by Adding Reversible Reactions, SIAM J Appl Math, 80(4) (2020) 1751–1777. (preprint at https://arxiv.org/abs/1906.09070)
[preprint] M. Banaji, The determinant of the second additive compound of a square matrix: a formula and applications, (2018) (https://arxiv.org/abs/1806.07162)
M. Banaji and C. Pantea, The inheritance of nondegenerate multistationarity in chemical reaction networks, SIAM J Appl Math, 78(2) (2018) 1105–1130. (preprint at https://arxiv.org/abs/1608.08400)
M. Banaji, Inheritance of oscillation in chemical reaction networks, Applied Math Comput, 325 (2018) 191–209. (preprint at https://arxiv.org/abs/1706.00684)
[preprint] M. Banaji, Counting chemical reactions with NAUTY (2017), (https://arxiv.org/abs/1705.10820)
M. Banaji and C. Pantea, Some results on injectivity and multistationarity in chemical reaction networks, SIAM J Appl Dyn Syst, 15(2) (2016) 807–-869. (preprint at https://arxiv.org/abs/1309.6771)
M. Banaji and C. Rutherford, Some results on the structure and spectra of matrix-products, Linear Algebra Appl 474, (2015) 192-212. (preprint at https://arxiv.org/abs/1405.7299)
D. Angeli, M. Banaji and C. Pantea, Combinatorial approaches to Hopf bifurcations in systems of interacting elements, Commun Math Sci 12(6) (2014) 1101-1133. (preprint at https://arxiv.org/abs/1301.7076)
P. Donnell, M. Banaji, A. Marginean and C. Pantea, CoNtRol: an open source framework for the analysis of chemical reaction networks, Bioinformatics 30(11) (2014) 1633-4
P. Donnell and M. Banaji, Local and global stability of equilibria for a class of chemical reaction networks, SIAM J Appl Dyn Syst 12(2) (2013) 899-920. (preprint at https://arxiv.org/abs/1211.2153)
M. Banaji and A. Burbanks, A graph-theoretic condition for irreducibility of a set of cone preserving matrices, Linear Algebra Appl 438 (2013) 4103-4113. (preprint at http://arxiv.org/abs/1112).
M. Banaji and J. Mierczyński, Global convergence in systems of differential equations arising from chemical reaction networks, J Differ Equations 254 (3) (2013), 1359-1374. (preprint at https://arxiv.org/abs/1205.1716)
M. Banaji, Cycle structure in SR and DSR graphs: implications for multiple equilibria and stable oscillation in chemical reaction networks, in Transactions on Petri Nets and other models of Concurrency (ToPNoC), volume V, series: LNCS, volume 6900, K. Jensen, S. Donatelli and J. Kleijn (eds) (2012)
T. Moroz, M. Banaji, N. J. Robertson, C. E. Cooper and I. Tachtsidis, Computational modelling of the piglet brain to simulate near-infrared spectroscopy and magnetic resonance spectroscopy data collected during oxygen deprivation, J Royal Soc Interface 9(72) (2012) 1499-509
B. Jelfs, M. Banaji, I. Tachtsidis, C. E. Cooper and C. E. Elwell, * Modelling noninvasively measured cerebral signals during a hypoxemia challenge: Steps towards individualised modelling*, PLoS One 7(6) (2012) e38297
M. Banaji and C. Rutherford, P-matrices and signed digraphs, Discrete Math 311 (4) (2011) 289-294. (preprint at https://arxiv.org/abs/1006.0152)
M. D. Papademetriou, I. Tachtsidis, M. Banaji, M. J. Elliott, A. Hoskote and C. E. Elwell, Regional cerebral oxygenation measured by multichannel near-infrared spectroscopy (optical topography) in an infant supported on venoarterial extracorporeal membrane oxygenation, J Thorac Cardiovasc Surg 141(5) (2011) e31-e33
M. Banaji, Graph-theoretic conditions for injectivity of functions on rectangular domains, J Math Anal Appl, 370 (2010) 302-311. (preprint at https://arxiv.org/abs/0911.0843)
M. Banaji, P0-matrix products of matrices, in Algebraic and Numeric Biology 2010, series: LNCS, volume 6479, K. Horimoto, M. Nakatsui, and N. Popov (eds.) (2010)
M. Banaji and D. Angeli Convergence in strongly monotone systems with an increasing first integral, SIAM J Math Anal, 42(1) (2010) 334-353; Addendum to “Convergence in strongly monotone systems with an increasing first integral”, SIAM J Math Anal 44(1) (2012) 536-537
M. Banaji and G. Craciun, Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems, Adv Appl Math, 44 (2010) 168-184. (preprint at https://arxiv.org/abs/0809.1308)
N. Radde, N. S. Bar and M. Banaji, Graphical methods for analysing feedback in biological networks: a survey, Int J Systems Sci, 41(1), (2010) 35-46
M. Banaji and G. Craciun, Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements, Commun Math Sci, 7(4) (2009) 867-900. (preprint at https://arxiv.org/abs/0903.1190)
M. Banaji, Monotonicity in chemical reaction systems, Dynamical Systems 24(1) (2009) 1-30
P. Donnell, S. Baigent and M. Banaji, Monotone dynamics of two cells dynamically coupled by a voltage-dependent gap junction, J Theor Biol 261 (2009) 120-125
P. Donnell, M.Banaji and S. Baigent, Stability in generic mitochondrial models, J Math Chem 46(2) (2009) 322-339
M.Banaji, A. Mallet, C. Elwell, P. Nicholls and C. Cooper, A model of brain circulation and metabolism: NIRS signal changes during physiological challenges, PLoS Comput Biol 4(11):e1000212 (2008)
V. Stadlbauer, G. Wright, M.Banaji, A. Mukhopadhayay, K. Moore and R. Jalan, Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis, Gastroenterology 134 (1) (2008) 111-119
M. Banaji and S. Baigent, Electron transfer networks, J Math Chem, 43(4) (2008) 1355-1370
M. Banaji, P. Donnell and S. Baigent, P-matrix properties, injectivity and stability in chemical reaction systems, SIAM J Appl Math, 67(6) (2007), 1523-1547
M. Banaji, A generic model of electron transport in mitochondria, J Theor Biol, 243(4) (2006) 501-516
M. Banaji, I. Tachtsidis, D. Delpy and S. Baigent, A physiological model of cerebral blood flow control, Math Biosci, 194(2) (2005) 125-173
M. Banaji, Strongly asymmetric clustering in systems of phase oscillators, Phys Rev E, 71 (2005) 016212
M. Banaji, Clustering in globally coupled oscillators, Dynamical Systems, 17(3) (2002), 263-285
M. Banaji and P. Glendinning, Towards a quasi-periodic mean field theory for globally coupled oscillators, Phys Lett A, 251 (1999) 297-302
Book chapters, refereed conference papers, and software
[open source software] M. Banaji, CRNcode GitHub repository (https://github.com/CRNcode/CRN) (2022–present).
[open source software] P. Donnell, M. Banaji, A. Marginean and C. Pantea, CoNtRol: Chemical Reaction Network analysis tool, (https://control.math.wvu.edu/) (2013–present)
[Conference paper] D. Highton et al, Modelling Cerebrovascular Reactivity: A Novel Near-Infrared Biomarker of Cerebral Autoregulation? Adv Exp Med Biol 765 (2012) 231-238
[book chapter] M. Banaji, From structure to dynamics in biological networks, in H. Koeppl et al (Eds.), Design and Analysis of Bio-Molecular Circuits, Springer (2011)
[book chapter] M. Banaji and S. Baigent, A flexible, iterative, approach to physiological modelling, in: R. Paton and L.A. McNamara (Eds.), Multidisciplinary approaches to theory in medicine, Elsevier (2005)
[Conference paper] Z. Rong, M. Banaji, T. Moroz and C. E. Cooper, Can mitochondrial cytochrome oxidase mediate hypoxic vasodilation via nitric oxide metabolism?, Adv Exp Med Biol 765 (2012) 231-238
[Conference paper] B. Jelfs, J. Panovska-Griffiths, I. Tachtsidis, M. Banaji and C. Elwell Individualised Optimisation of Modelled Cerebral Oxygenation Near-Infrared Spectroscopy Signals, Biomedical Optics and 3-D Imaging, OSA Technical Digest (2012).
[Conference paper] T. Moroz, M. Banaji, et al, Development of a model to aid NIRS data interpretation: Results from a hypercapnia study in healthy adults, Adv Exp Med Biol 737 (2012) 293-300.
[Conference paper] M. Banaji, A. Mallet, et al, Modelling of mitochondrial oxygen consumption and NIRS detection of cytochrome oxidase redox state, Adv Exp Med Biol, 662 (2010) 285-292
[open source software] M. Banaji, BRAINCIRC modelling environment. (http://braincirc.sourceforge.net/) (2004-2008)